常温下a/o工艺的短程硝化反硝化 |上海而立环保科技有限公司-凯发娱乐官网入口
常温下a/o工艺的短程硝化反硝化
1 试验装置与设备
1.1 试验流程及设备
a/o工艺模型主要由合建式缺氧—好氧反应器和竖流沉淀池组成,如图1所示。
合建式反应器分为3个廊道,总有效容积为85l;沿池长方向设置若干成对的竖向插槽,配以相应大小的插板,可以将整个反应器沿池长方向分成若干个小格,在每个插板上开一个25mm的圆孔,安放时使相邻圆孔上下交错以防止发生短流;在反应器顶部布置环状曝气干管,并设置若干个小阀门,由橡胶管连接烧结砂头作为微孔曝气器,气量由转子流量计测量;根据缺氧段所占比例,选择安放若干搅拌器用于保持泥水混合均匀;在距池底20cm的高度上设置若干取样口。进水、污泥回流和内循环流量分别用3台蠕动泵控制。沉淀池的沉淀区呈圆柱形,直径为30cm;污泥斗为截头倒锥体,倾角为60°;采用中心管进水、周边三角堰出水方式。
1.2 原水
采用由黄豆粉、葡萄糖、nh4cl、kh2po4和nahco3与自来水配制的模拟生活污水。
1.3 分析项目与方法
cod:重铬酸钾法;mlss:滤纸称重法;do、温度:wtwdo测定仪及探头;ph值:wtwi nolab ph level2和ntc30电极;no2--n,:n-(1-萘基)-乙二胺光度法;no3--n,:麝香草酚分光光度法;nh3-n:纳氏试剂分光光度法。
2 结果及分析
2.1 对nh3-n的去除率和no2--n的积累率
试验期间测得进水平均nh3-n浓度为40.21mg/l,对nh3-n的平均去除率为90.78%,出水中no2--n,占tn的比例平均为75.29%。
在前51天,出水中no2--n,含量占tn的50%以上(平均为87.36%),维持了稳定的no2--n积累。第50~53天配制原水时以na2co3代替nahco3来提供碱度,使硝化类型发生显著变化,转化为全程硝化反硝化。从第54天开始配制原水时仍然以nahco3提供碱度,又出现了no2--n,积累现象,但是在其后的试验中no2--n,积累率不稳定。
2.2 温度的影响
试验启动后未进行温度控制,水温随室温的日变化为(±0.5)℃。在温度为18~25℃的变化区间内反应器no2--n的积累比较稳定,说明a/o工艺可实现常温硝化反硝化。
balmelle等认为在10~20℃时硝化菌属很活跃,无论游离氨(fa)浓度多大,no2--n的积累率都很低,此条件下温度对硝化菌活性的影响比fa对其抑制作用大。当温度为20~25℃时硝化反应速率降低而亚硝化反应速率增大。当温度>25℃时fa对硝化菌的 抑制作用大于温度的作用,可能因fa的抑制造成no2--n的积累[1]。此外,由sharon工艺机理可知,亚硝化菌在数量上可能形成优势的温度范围为30~36℃[2],而笔者试验中在18~25℃实现了短程硝化反硝化并不符合上述文献中的观点。试验 结果表明,即使温度<25℃,fa、hrt、碱度类型以及反硝化是否充分等因素也会对硝化菌活性产生影响。
2.3 ph值和fa的影响
在试验前期配制原水时没有补充碱度,原水ph值一般在7.1左右。第23~28天由于室温升高和原水在配水箱内的停留时间较长,水解酸化比较严重,ph值降到6.48。为了不影响硝化效率,同时更真实地模拟生活污水,配制原水时投加了nahco3,将ph值调至7.00~7.29。在第50~53天改投na2co3提供碱度。虽然ph值提高至7.62~8.44,但是no2--n积累率锐减,硝化菌的活性迅速恢复、数量增加,造成了硝化类型的转变。第54天后重新投加nahco3提供碱度,在第55天no2--n积累率上升,但是在其后的试验中no2--n积累率不稳定,从而实现了向全程硝化类型的转变。试验结果表明,在较低的ph值下也可能发生短程硝化反硝化,而碱度类型对硝化类型也有影响。
据文献介绍,fa是对no2--n积累有重要影响的因素之一。一般认为硝化杆菌属比亚硝化单胞菌 属更易受fa的抑制,而关于fa的抑制浓度的说法不尽相同,一种是fa对硝化菌 的选 择性抑制发生在0.1~10mg/l[3]。试验中短程硝化反硝化呈比较稳定时期的原水中fa为0.06~1.02mg/l,平均为0.25mg/l。在投加na2co3后原水中fa增至1.31~3.22mg/l,反而没能抑制硝化菌的活性。原水进入反应器后被内循环流量稀释,同时伴随着nh3-n的降解,反应器中的fa降低。试验结果表明,硝化菌属对外界环境很敏感,即使fa浓度很低(0.06mg/l)也会对其产生抑制作用,此外fa浓度不会单独成为no2--n积累的主要影响因素。
2.4do的影响
celcen和gonenc[4]认为在硝化反应阶段当(do∶fa)<5时会产生no2--n的大量积累,因而抑制了no2--n的生成,当(do∶fa)>5时则不会出现no2--n。本试验为保证好氧段的泥水混合均匀而采用较大的曝气量,反应器内do浓度较高(在好氧段始端do>1.5 mg/l),同时原水的平均fa为0.25mg/l,do∶fa值较高,故可认为do不是发生短程硝化的主要原因。
2.5 反硝化的程度
在试验的第6、11、13、24、28天,在缺氧段末端检测到一定浓度的no2--n,说明反硝化不彻底。同期监测发现原水在配水箱中停留时间过长,水解严重而造成cod下降,影响了反硝化效果,造成缺氧段末端和好氧段始端积累较多的no2--n,抑制了亚硝化反应,并为硝化菌提供大量的底物。一般在其后第2天出水中no2--n的积累率下降,说明这种响是滞后的,而且短期内可以恢复。
此外,反硝化不彻底会造成出水中残余no2--n浓度较高,这会影响后续**效果和**剂用量。因此,对于a/o工艺有必要监测原水的水质、水量变化以判断有机碳源是否充分,并及时调整内循环比来实现比较彻底的反硝化。
2.6hrt的影响
在试验的第23天和35天,出水中no2--n含量仅占tn的40%左右,这是由于hrt增至12h造成的,说明no2--n的积累与hrt相关。因硝化反应存在滞后现象,故控制较短的hrt有助于no2--n的积累。同时,延时曝气可以减少no2--n的积累。试验中a/o工艺的hrt为6~8h,这既可保证nh3-n的充分硝化,又能促进no2--n的积累。
设计传统脱氮工艺时通常不考虑hrt对硝化类型的影响,认为亚硝化菌在常温下的数量和活性在硝化系统中都不占优势。如果仅控制hrt且使其值较小,则可能存在no2--n的积累,但no2--n的积累率很难达到50%以上。
2.7 污泥浓度和泥龄的影响
试验启动后测得初期反应器内mlss约为1287mg/l(不排泥),到第17天的mlss达到2122mg/l,但随后由于蠕动泵故障又导致mlss迅速下降到1014mg/l,之后仍然不排泥,到mlss浓度达3412g/l时泥龄已达35d以上。由于长期不排泥,泥龄远远大于常温下亚硝化菌和硝化菌的世代时间,二者在反应器内都可能形成优势菌种。试验阶 段曾出现过no2--n积累率的波动,也说明反应器内硝化菌和亚硝化菌长期共存,而发生短程硝化反硝化主要是因为硝化菌的活性受到抑制,使得硝化反应滞后于亚硝化反应的时间更长,同时控制hrt可使a/o工艺通过短程硝化反硝化途径实现脱氮。
3 结论
①a/o工艺在常温(18~25℃)下可以发生比较稳定的短程硝化反硝化。
②在ph<7.5时也可能发生短程硝化反硝化,这对生活污水的处理具有重要意义。
③硝化菌属对外界环境很敏感,即使fa很低(0.06mg/l)也会产生抑制作用,但fa浓度不会单独成为影响亚硝酸盐积累的主要因素。
④反硝化是否彻底将影响硝化类型。反硝化不完全时硝化类型向全程硝化转化,一旦反硝化比较彻底则可以在短时间内恢复短程硝化反硝化。
⑤因硝化反应存在滞后现象,故控制较短的hrt有助于no2--n的积累。同时,延时曝气可以减少no2--n的积累。
⑥反应器内的泥龄≥35d时硝化菌和亚硝化菌长期共存。发生短程硝化反硝化主要因为硝化菌的活性受到抑制而不是数量少。
图4氨氮浓度变化
3.2 ph影响
如图5所示ph值影响试验的结果。在酸性范围ph值7.85-6.45内(低于7.85)对硝化没有影响,但低于6.35硝化完全抑制。酸性范围研究结束后,反应器在ph值7.85运行,为了恢复微生物的活性。恢复活性阶段结束后,在正常ph值范围里研究ph值对亚硝酸盐积累影响,可以观察到在ph值7.85-8.95内ph值没有影响(见图5),尽管在ph值在8.65和8.95发生了亚硝酸盐短暂积累。在ph值9.05,完全抑制硝化反应的发生,没有亚硝酸盐积累。
图5 ph值对亚硝酸盐积累的影响的示意图
那些结果显示在大的ph值范围(ph6.45-8.95)内研究完全硝化会发生。在ph低于6.45和高于8.95时,完全抑制硝化反应,没有亚硝酸盐的积累。图6总结了研究ph对亚硝酸盐积累的结果。
图6 ph值对氨氮氧化百分率和亚硝酸盐积累的影响。(x)氨氮消耗百分率,
(●)亚硝酸盐积累百分率。
在正常ph值内ph值的影响被预料到了,由于自由氨氮对氨氮和亚硝化氧化菌的抑制,正如以前报道。同行工作者解释说在酸性ph值仅有亚硝酸盐氧化菌被自由氮酸抑制。但是在本研究中两菌种均受到抑制。这意味着自由氮酸能产生抑制氨氮氧化菌的物质,但是以前还没报道。
suthersan 和 ganczarcczyk发现在高的ph值亚硝酸盐积累可以取得,建议通过控制ph可以引起亚硝酸盐积累。在我们的研究中,短程亚硝酸盐积累发生,龙其改变了ph设定值后,但是由于微生物的适应,在几天后完全硝化发生了(如图5)。连续培养和足够的时间适应可以解释在每个ph值试验结束时不能取得亚硝酸盐积累的原因。这意味着长期用ph值作为一个关键的参数不可能取得亚硝酸盐的积累。
3.3 do影响
如图7所示本系统在do值连续变化中系统的特征,可以发现do浓度在5.7-2.7mg/l对亚硝酸盐积累没有影响。在do值为1.7mg/l亚硝酸盐短暂积累发生了。在do值为1.4mg/l和0.7mg/l时,氨氮消耗相同,亚硝酸盐积累增加。在do值为0.5mg/l时,亚硝酸盐积累和氨氮消耗量都减少了。
图7 do浓度对亚硝酸盐积累影响的示意图
图8概要了那些结果。每一点在各个条件下稳定运行取得的值。可以知道亚硝酸盐在do值为1.7mg/l时亚硝酸盐积累开始,在do值为0.7mg/l时*大,氨氮完全消耗了。
图8 do浓度对氨氮氧化和亚硝酸盐积累百分数的影响
(□)氨氮消耗百分比,(●)亚硝酸盐积累百分比,每个值在各个条件下稳定运行取得的。
那些结果显示在本研究条件下,长期运行系统12天(超过50个水力停留时间周期)在do值为0.7mg/l,至少65%的nlr以亚硝酸盐形成积累和98%的氨氮消耗。根据化学计量法这个积累意味着着在硝化阶段氧需求量减少17%(对照完全硝化需要2莫尔每莫尔氨氮消耗1.67莫尔氧),它将减少曝气量。正如前面所述,亚硝酸盐积累意味着反硝化进一步节约了cod量。
4 结论
在ph值大范围(在ph 6.45和8.95之间)内,完全硝化有可能发生。在ph值低于6.45和高于8.95硝化突然下降,氨氮氧化和亚硝酸氧化菌完全受到抑制。
do值在5.7~1.7mg/l硝化不受影响,但do为1.4mg/l亚硝酸盐积累发生,并且随do浓度减少逐渐增加,但不会影响全部氨氮转化。在do值研究内,*大亚硝酸盐积累发生在do浓度为0.7mg/l时。在do值为0.5mg/l时氨氮转化受影响,意味着氨氮积累发生。
在本研究的条件下,至少65%nlr以亚硝酸盐形式积累,98%氨氮转化(保持12天do值为0.7mg/l)。根据化学计量法这意味着硝化阶段可以减少17%氧需求量。这个减少将节约曝气量和在反硝化时进一步节约cod需求量。